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le Introduction

Paris and Erdogan [1]1 have shown that the concept of a stress
intensity factor may be fruitfully employed to predict the rate at
which a fatigue crack propagates. Since fatigue cracks genmerally
originate at geometric discontinuities in structures composed of
thin plates and shells, it is necessary that the effect of the
discontimuity from which these cracks emanate be included in the
evaluation of the stress intensity factor. Using Bowie's results
[2,3] for an infinite plate with radial cracks originating from an
internal hole, Paris [lﬂ computed the stresg intensity factors for
this configuration. His calculations indicated for crack lengths less
than 3 as compared to the radius of the hole that an error of 2 per
cent or greater, depending upon the number radial cracks, could be
introduced by considering the plate to contain only a central crack.
This error increases as the crack length decreases in size since the
influence of the hole on the crack tip stress field will progressively
increase as the crack becomes smaller. If the stress intensity factor
is to be used in studying crack propagation, even relatively small
errors can not be tolerated.

Crack propagation rates generally vary as the stress intensity
factor to some positive power which depending upon the material and
environment is greater than two. Thus small errors in the stress in-

tensity factor can produce large errors in the computation of crack

1. Kumbers in brackets refer to references at end of paper.




propagation rates.

In this paper the stress intensity factors will be evaluated for
an infinite plate subjected to cylindrical bending with one and two
radjal cracks emanating from an internal hole, Figure 1. This is
accomplished by using a complex variable formulation of the problem
in conjunction with an approximate mapping function as proposed by
Bowie [2.:3 - Some of the results presented by Paris [‘&J are also
recomputed since it is felt that the techniques employed in the

present analysis will yield more accurate results.

2. Formulation of the Problem

In this problem we will consider the equilibrium of a thin,
uniform isotropic plate of thickness h which is subjected to the
bending couples shown in Figure l. By introducing the complex
variable z, z = x + iy , with z = O representing the center of the
plate, we find, after applying the techniques of Muskhelishvili [5]
to the Poisson-Kirchoff theory of plate bending, that the deflection
of the plate, w, can be represented by two analytic functioms

P (2) and 30(2). where

V4
w(x,y) = Re l:?(/’(z) +| ¢ (z)dgl (1)

To simplify the problem a secondary complex plane which 1s

defined by

z=w(J) (2)

is introduced. The complex mapping function (¥ ) maps the region




in Pigure 1 exterior to the circle and cracks onto the complex
plane which is exterior to the umit circle |$|> 1.
Using the standard notation { (z) = 4 En(S ):] =@(5),
p'(z) = @1 (3)/w'(F), etec., where the prime denotes the derivative,

we can write expressions for the bending and twisting moments M,

., Hyy in rectangular components. These are

Hx+lly=-4D(1+)))Rel3f'(3)/m'(3§‘ (3)

My~ Mgt 21, = 2D(1 - ) % w(SS@'(S)/m’(fS’]' + Yi(s) S/W'(f)

(®
En>

—— and YV is Poisson'!s ratio. The stresses
12(1 - V°)

where D =

Oxs Oy and Gyy can be written in terms of My, My, and Hey and are
=125 . =128y . =12
Tx %) ¥x 0_;' o ¥ ng ?‘{wa (5)

where § is the coordinate in the w direction measured from the
central plane of the plate.

Since the primary purpose of this paper is to evaluate the
stress intemsity factors, only the complex function ¢ (3 ) is needed.
This follows from the definition of the stress intensity factor for

bending given by Sih, et al. [6J

= =22AZR00) w /u(5)- A3 [p1(3) /e (5 )]

(6)



where K, is the stress intensity factor for bending and 3 1
corresponds to the crack tip in the mapped plane. Thus, if o ¥)

is known, only the function (P (S ) must be determined. This function
is analytic in the § plane |31> 1 except for the point at infinity
and it must satisfy the boundary conditions of the problem. The
Kirchoff boundary conditions for this problem on the unloaded

internal boundary, |8| = 1, can be written as

KPO) + o(T)Pi(c) /o' (T) + P () =0 (7

where K= -3V ) a4 T = eiB .
(1L-»)

3. The Exact and Polynomial Approximation of the Mapping Function

Bowie [2,3] gives the appropriate mapping function for the problem,

in differential form, as
dzfz = (1 - $ Hay/e(1 +2ey K4 S"?-K)I/2 (8)

where K is a positive integer representing the number of equal spaced
cracks. € is a real parameter such that 0 { | €| £ 1. By varying €
the crack depth may be changed. As Bowie points out, for X > 1, the
integration of the differential form of the mapping function becomes
quite involved.

By using a different approach, the mapping function z can be
arrived at very simply. Considering the following successive

transformations:




®, = am, + B (9
@ = 3w, + )
o = 3§
we arrive at
z={%(xx+?1f)+a+ {[%(3’&—31}-)4-?]2-131/2:] i (10)

By letting
afz2=1fL -€) and B=(L+€)/(1L-€)

equation (10) becomes
1/K

2= ) EYK+_1-_+1+€ +(1+ D¢ Zyoce K 1)1/2]
S(1-61 AR 3") 3 J

(11)
where € is identical to the £ in equation (8). Equation 11 represents
the transformation of the unit circle interupted by K symmetrically
located cracks in the z plane to the unit circle in the ¥ plane.

For the present analysis it is convenient to expand the right

side of equation (11) in a power series which will have the form

SR

where the Ap's are real.




It can easily be shown [5] that using the infinite series
given by equation (12) leads to an infinite mumber of equations in
infinitely many unknowns for the determination of 1/7 (%). By
replacing equation (12) with an ¥ term approximation of the mapping
function a set of ¥ in equations in N unknowns is produced from which
{ (3 ) can be determined. The finite approximation of equation (12)
will have the form

) 1-En 1-K(H+1)

1-KN
7, = C S+n§=:1€n3 +€.,,3 +€NS ] (13)

where €n= An o = 1y2)0e0, N = 2, and coefficients € and € X

E-1
are determined in such a manner that the crack tip singularity is
retained in equation (13). ¥ is chosen so that a desired accuracy in
@(3) is obtained.

To determine € N1 and € g 1t is required that dzy/d$ be of the form

dzyfdy = (1 - _;_K)g(x) (1)
or
dzy/a g ‘ =0 (15)
$=¢,
It is also required that
a2z, jag? = dzjas" (16
% S

By using equations (15) and (16),two equations in the two unknowns,
coefficients €N—-1 and € y &re obtained. For K = 1 the coefficient €

will be 2f1 -€) and the equations for determining € 5 2nd € - will be

-6-




B-2
N€E_1+(F+ 1)€n=‘1' zl (1--:::)6n (17)
n=

BE+ D€ +(F+ 1)(+ z)€ = 1+.€ +3 y
1/2
(8 + 8¢€)

§-2

+ I (1-2@E, (18)
n=]

since we can always chose Sl = 1.

4, Determination of ¥ (¥) and the Stress Intensity Factors

In order to satisfy the boundary conditions at infinity the two

complex functions { (%) and () (5 ) must be of the form

M s
P(z) — sy (+)

| 3= (19)

Y(g) —» _M¢C ¢
D(1-V)

ol
S’

It can also be shown [5] that P (8) will be of the form

hy
P(S) -D(1+\>)[T+ Za \{ ] (20)

Thus the present task is to determine the coefficients @&, so that
they satisfy the boundary conditions given by equation (7). For

the problem being considered making use of the result [5]

W (SIP(3) = Ka'($)PD) - ADIp( ) (21

-7-




a convenient scheme is obtained for determining the coefficients Qe

As § becomes large the product w!'(S )¢ '(X) becomes

h i

2 o
W (S)Yr(s)pmLH 3) — 0o (22)
p 20— o) (3 I's|

Pherefore for large §

2
- 1 S
Ko ()P (D) - (D)) =LE__ (3 [S]— (23)
Pis ) D(1-D) 2 =
By substituting equation (20) into equation (23) we arrive at a set
of simultaneous equations for the determination of the coefficient R

For the case of a single crack, K= 1, we have

H¥-p ¥-p
(3+Vv )ap+(3 % )nil(l - n)enamp— (1 -9 )1:1(1 - n)unemp
0, P?‘ 2
-Ll__;__‘l_l.ep-_- p=1,2...8
1+
-— 2 . p=2

(28)

and for the case of two cracks, K = 2,

¥-p ¥-p
3+V )°'2p+(3 +) )nzl(l = zn)a'z(m-p)e ot -P )121(1 - )€ n+p 2n

o, p#1
—-(L-E-E—Lep.‘_- p=1.2,...]§f

L1+, p=1
2
Gzp.l =0 P=12,e.0,N (25)
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To determine the stress intemsity factor for the problem it is
now convenient to take the limit indicated in equation (6) as §

approaches +1. This leads to

~12G+v) Py (26)
2
h En"(l):ll/z

which can be rewritten by using equation (20) and the fact that the

00
surface stress at infinity is given by Tp = 6’12
h

KN
- 3+\> 1 -
5 = (1 +» [”(1)]1/2[ * nz (- e

In equation (27) the only term that depends upon N, the number of terms
KN

retained in the mapping function, is the smm T (1 - n)an. Therefore,
n=1

determining this sum to a desired accuracy allows the computation of

Ky to the same accuracy.

5. Numerical Results

In order to determine the stress intensity factors for the
configuration shown in Figure 1 in terms of the ratio L/R, the form

for the siress intensity factor given by Paris [MJ was used. Phis is
K = OeVL #(P (28)

The quantity f(:-all) was determined by equating equations (27) and (28).

In equation (27), as already mentioned, the only term dependent
KN
upon N is the sum = (1 - n)an- This sum was computed for various
n=1
values of N and € . The quantity € was related to the desired value

9




of % by the relations

n 2
2(—£2) -1 , E=1

€ A+ 2

(29)

c =2|‘(9\+1)2"12_1’ K=2
[()+1)2+1

where ) = L/R.
It was found for a value of L/R equal to or greater than 0.1
that by retaining approximately 50 terms in the mapping function the

KN
sum X (1 - n)a, and consequently f(% could be computed toan accuracy

n=1
of ¥ 0.001. For smaller values of % more than 50 terms would be needed

for an accuracy of T 0.001. Due to the storage limitations of the
digital computer used it was not practical to have N larger than
50. One value of f(i-l') was computed at an % value of 0.05. This
value was determined to be accurate to} 0.01 .

The results of all computations are given in Pables I and II.
Pable I gives the value of f(iI-ﬁ for the single and double crack
configurations shown in Figure I for 7)) = -;-- and D =-E-;- « The
quantity% varies between 0.05 and 10.0. Table II gives the values
of f(@ for uniaxijal tension. These were computed by using the system
of equations given in [:2]. Due to the poor convergence of the system
of equations for temsiom, as compared to equations (24) and (25),
only ‘Iﬁ! values between 0.5 and 10.0 were used. These values are
accurate to T 0.001. Table III gives the values of f(%’) reported by
Paris [4] .

The values of f(-lli_.) given in Table I are also displayed graphically
in Pigures 2 through 9.

-10-




6. Discussion:

As a first point of interest, the values of f(%) given in
TPable I may be used to determine the range of validity fer which
the configuration of Figure 1 may be considered as an infinite sheet
with a central crack. For the case of X = 2, two cracks, and %7 3
the assumptien of a central crack is valid with only a small error
(1ess than 1%) being introduced due to the assumption. Therefore
for X =2 and %’-i > 3, the stress intensity factor may be calculated
from By = OxnY L, where 2L, = 2(R + L)« This is definitely not
the case for K = 1, a single crack. If one were to assume that
Ky = Cﬁﬂ.l swhere 2L, = 2R+ L, an error of about i would be
introduced even for values of -ﬁ- = 10.0 Thus for K = 2 and -% > 3
a central crack may be assumed while for K = 1 this assumption is
greatly in error.

The results given in Table II for tension show for K= 2, K= 1,
and —n{ﬁ 2 3 that the assumption of a central crack introduces a
negligible error. This obvious difference between tension and bending
in the range of % for which a central crack can be assumed for
K = 1 will be discussed later.

Bueckner [ 7] and Bowie [8] in their studies of edge cracks in
sheets subjected to tension, Figure 11, found that there was a definite
effect on the stress intensity factor for small crack lengths due to
the free edge of the sheet. For small crack lengths, the stress
intensity factor was found to be equal to Ky = 1.13 TV L, as
opposed to G',oﬁ, where Ow is the stress at infinity and I the
crack length. Paris [L"] in computing his values of f(%') for tensien

used this free edge effect and considered the crack for very small

~]le



values of% to be an edge crack in a sheet subject to a stress of

3 Jo at infinity, Figure 12. The quantity 3 is the value of the
stress concentration factor for a sheet subjected to uniaxial tension
and weakened by a circular hole. The end result of this thought
process leads to a value of f(-%) = 3.39 for -11-1'-9 0.

One of the primary reasons for computing the values of f(-;Ill)
given in Table II was to check values of f@ given by Paris for
small % values. Although there is not any data reported in Table II
for small values of % » some computations were made for % between
0.1 and 0.5. The general trend of these computations tended to verify
the assumption made by Paris that f(%) = 3439 for small crack lengths.
It should also be pointed out that the data given in Table II is more
accurate than that given by Paris for the same range of % .

From the theory of plate bending, one finds [9] that the stress
concentration factor for a plate subjected to cylindrical bending
and weakened by a circular hole is (5+ 3D)/(3 +» ). If the edge
effect found in tension were also present in bending one would be
led to let the value of f(i‘) for small crack lengths be ?;qual to
f(%)

f(%) = 2.03. From an inspection of Pigures 2,3,6 and 7 it appears

1.13 (5+ 3»)/(3+v ) . For the specific case of L = 1/3,

i

that f(—%’) approaches 1.8 rather than 2.03. It is also interesting to
note for P = 1/3 that the stress concentration factor is equal to
1.8. It would now appear, although not conclusively proven, that the
edge effect found for tenmsion is not present in bending ;a.nd for
small -]I'E values £(B) = (5+ 39)/(3+»).

Erdogan [].d gives the exact closed form of the stress intensity

factor for the shear problem of 2 hole and a single crack emanating

-12-




from the hole, Figure 13, as

o a2 I
xs(a)= 9 (2a+1)‘\/l4a2-1

8aVa

This mey be written in terms of f(%) as

L) 2%
7P = L @+
VZ[® +1

If one now investigates the range of % for which the body can be
assumed to contain only a central crack it is found for i— = 10.0

that an error of about 4% is introduced. As for the case of bending,
this error increases as % decreases. In Figure 10 f(% for the
shear problem is plotted along with f(%—) for the bending problem for
K=1and p= -%'- .« An inspection of this Figure shows in the range of
% » 0:5& 1—11"4 9.0, that these two solutions do not vary by more than
2%. Thus the shear problem and bending problems show close agreement
and depart strongly from the solution for temsion in which K = 1.

Phe similarity in the solutions for K = 1 between bending and
shear leads one to suspect that an analogy between shear and bending
problems for the determination of the stress intensity factors for
bending might exist. This would be of considerable assistance in
handling bending problems since many problems which are not tractable
in bending are easily solved for shear. Thus over the range of
applicability one could use the stress intensity factors found for
shear for K. However, this concept should be checked very carefully
before it is applied to other problems.

In general the method outlined by Bowie [2,3] and used in solving

-13-




this problem has proved to be very suitable for the determination of
stress intensity factors for cracks emanating from geometric voids.
By using some of the mapping techniques given in [1g one can handle
any type of void geometry. The only limiiation in this technique is
that it requirés a large number of terms in the mapping function to
obtain high accuracy for small values of % « This limitation is not

insurmountable in view of current digital computing systems.
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TABLE I

£(X) , Two Cracks f(%’) , One Crack
2 v =2 »=42 Y= 3 pER
3 4 3 L
0.05 1.78 1.75 1.75 1.73
0.1 1.733 1.713 1.730 1.710
0.2 1.665 1.652 1. 660 1. 646
0.3 1.607 1.597 1.597 1.587
o.4 1.556 1l.548 1.540 1.533
0.5 1.511 1.505 1.489 1.484
0.6 1.472 1.468 1443 1.440
0.7 1.438 1434 1.401 1.399
0.8 1.ho7 1.405 1.364 1.363
0.9 1.381 1.379 1.330 1.330
1.0 1.357 1.355 1.300 1.300
1.5 1.270 1.269 1.181 1.183
2.0 1.215 1.215 1.101 1.103
3.0 1.152 1.152 1.001 1.003
4.0 1.117 1.117 0.941 0.943
5.0 1.095 1.095 0.901 0.905
6.0 1.08¢0 1.080 0873 0.874
7.0 1.069 1.069 0.852 0.853
8.0 1.061 1.061 0.836 0.837
9.0 1.054 1.054 0.822 0.824
10.0 1.049 1.049 0.812 0.813
oo 1.000 1.000 0.707 0.707
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TABLE 11

% f(%’) , Two Cracks f(%—') . One Crack
0.5 1.833 1.731
0.6 1726 1.605
0.7 1642 1.509
0.8 1574 1.428
0.9 1.519 1.362
1.0 1.472 1.307
1.5 1.323 1.128
2.0 1.2L5 1.031
3.0 1.164 0.930
4.0 1.123 0.878
5.0 1.098 0.846
6.0 1.082 0. 824
7.0 1.070 0.808
8.0 1.062 0.796
9.0 1.055 0.787
10.0 1.049 0.779
oo 1.000 0.707
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TABLE III

-}Li f('%)’ Two Cracks f(%). One Crack
0.00 339 3.39
0.10 2.73 - 2.73
0.20 2.1 2.30
0.30 2.15 2.04
0.40 1.96 1.86
0.50 1.83 1.73
0.60 1.71 1.6k
0.80 1.58 1.47
1.0 | l.45 1.37
1.5 1.29 1.18
2.0 1.21 1.06
3.0 11l 0.94
5.0 1.07 0.81

10.0 1.03 0.75
oo 1.00 0.707
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